Global impact of Biotech crops: economic & environmental effects 1996-2006

Graham Brookes
PG Economics UK

www.pgeconomics.co.uk

遺伝子組み換え作物のグローバルインパクト: 1996-2006年の経済および環境への効果

グラハム・ブルックス 英国 PG Economics

www.pgeconomics.co.uk

Coverage

- Presenting findings of full report available on www.pgeconomics.co.uk
- Version in peer reviewed journal: AgbioForum (2008) 11, (1) 21-38 www.agbioforum.org
- Cumulative impact: 1996-2006
- Farm income & productivity impacts: focuses on farm income, yield, production
- Environmental impact analysis covering pesticide spray changes & associated environmental impact
- Environmental impact analysis: greenhouse gas emissions

調查内容

- 報告書の全文は、www.pgeconomics.co.ukにて参照可能
- ピアレビューを『アグバイオ・フォーラム』(2008年)11、(1)
 21 38にて閲覧可能 www.agbioforum.org
- 対象期間:1996年-2006年
- 農業収入および生産性への影響:農業収入、収量および 生産量に着目
- 農薬散布量の変化および関連する環境への影響を含む 環境への影響の分析
- 環境への影響の分析:温室効果ガス排出

Methodology

- Literature review of economic impact in each country collates & extrapolates existing work
- Uses current prices, exch rates and yields (for each year): gives dynamic element to analysis
- Review of pesticide usage (volumes used) or typical GM versus conventional treatments
- Use of Environmental Impact Quotient (EIQ) indicator
- Review of literature on carbon impacts fuel changes and soil carbon

調査方法

- 各国の経済的影響についての文献調査 既存 文献との照合およびそれらを基にした推定
- 各年ごとの現在の価格、為替レートおよび収量 の変動要因を加味して分析
- 農薬使用(使用量)または典型的な遺伝子組み 換え作物と従来作物との比較に関する検証
- 環境影響指数(EIQ)を指数として利用
- 炭素の影響(燃料の変化および土壌炭素)に関する文献を検証

Farm level economic impact

- 2006: farm income benefit \$6.9 billion
- 2006: equiv to adding value to global production of four crops, soybean, corn, canola, and cotton of 3.8%
- 53% of farm income gain in 2006 to farmers in developing countries (49% 1996-2006)
- Since 1996, farm income gain = \$33.8 billion

生産者への経済効果

- 2006年:69億USドルの農業収入増
- 2006年:4つの作物(大豆、トウモロコシ、ナタネ、ワタ)のグローバル生産の3.8%増加に相当
- 2006年、農業収入増の53%が発展途上国の生産者の収入増(1996~2006年:49%)
- 1996年以降の農業収入増加=338億USドル

Other farm level benefits

GM HT crops	GM IR crops	
Increased management flexibility/convenience	Production risk management tool	
Facilitation of no till practices	Energy cost savings	
Cleaner crops = lower harvest cost & quality premia	Machinery use savings	
Less damage in follow on crops	Convenience benefit	
	Improved crop quality	
	Improved health & safety for farmers/workers	

生産者へのその他の利点

除草剤耐性作物	害虫抵抗性作物		
管理の柔軟性および利便性の増加	生産リスク管理ツール		
不耕起栽培を推進	エネルギー経費の節減		
夾雑物の少ない作物 = 収穫経費の 低減および優れた品質	機械使用の節減		
後作へのダメージが少ない	利便性		
	作物の品質向上		
	生産者の健康 および安全性の向上		

Cost of accessing the technology 2006

- Total trait benefit 2006 = \$9.6 billion comprising \$6.91 billion additional farm income plus \$2.7 billion cost of accessing technology
- Cost of tech goes to seed supply chain (sellers of seed to farmers, seed multipliers, plant breeders, distributors & tech providers)
- Overall cost of tech as % of total trait benefits = 28%

2006年 技術アクセス費

- 2006年の遺伝子組み換え形質による利益総額= 追加農業収入69億1,000万USドル+技術アクセ ス費27億USドル=96億USドル
- 技術費は、種子サプライチェーンに支払われる(農業生産者への種子販売業者、種子メーカー、 育種家、流通業者および技術プロバイダ)
- 遺伝子組み換え形質による利益総額に占める全 技術費の割合 = 28%

Yield gain versus cost saving

- 43% (\$14.54 billion) of total farm income gain due to yield gains 1996-2006
- Balance due to cost savings
- Yield gains mainly from GM IR technology & cost savings mainly from GM HT technology
- Yield gains greatest in developing countries & cost savings mainly in developed countries
- HT technology also facilitated no tillage systems allowed second crops (soy) in the same season in S America

収量増対 コスト節減

- 1996~2006年における農業収入増加の43% (145億 4,000万USドル)は収量増によるものである
- 農業収入増加の57%はコスト節減によるものである
- 主に収量増は、遺伝子組み換え害虫抵抗性技術により、 主にコスト節減は、遺伝子組み換え除草剤耐性技術による
- 収量は発展途上国で最も伸び、先進国においては主にコスト節減
- 除草剤耐性技術は、不耕起システムも促進した 南米では同シーズン中に二番作(大豆)を可能にした

Impact on pesticide use

- Significant reduction in global environmental impact of production agriculture
- Since 1996 use of pesticides down by 286 m kg (-7.9%) & associated environmental impact -15.4%
 equivalent to total EU (27) pesticide active ingredient use on arable crops in one year
- Largest environmental gains from GM IR cotton: savings of 5.6 million kg insecticide use & 25% reduction in associated environmental impact of insecticides

農薬使用への影響

- 農業生産による世界的環境負荷の大幅な削減
- 1996年以降、農薬使用量は2億8,600万kg(28万6,000トン)(7.9%)減、関連する環境への影響も15.4%減 この量は、1年間にEU(27カ国)が耕地作物に使用する農薬有効成分の総量に値する
- 遺伝子組み換え害虫抵抗性ワタによる最大の環境メリット: 殺虫剤使用量560万kg(5,600トン)節減、およびこの節減に関連して殺虫剤による環境への影響が25%低減

Impact on greenhouse gas emissions (GHG)

Lower GHG emissions: 2 main sources:

- Reduced fuel use (less spraying & soil cultivation)
- GM HT crops facilitate no till systems = less soil preparation = additional soil carbon sequestration

温室効果ガス排出量への影響

温室効果ガス排出量削減の 2つの主な原因:

- 燃料使用量の削減(農薬散布および土壌 耕起の減少)
- 除草剤耐性作物が、不耕起システムを促進 = 土づくりに手間がかからない = より多くの土壌中の炭素を隔離

Reduced GHG emissions 2006

- Reduced fuel use (less spraying & tillage) = 1.2 billion kg less carbon dioxide
- Facilitation of no/low till systems = 13.5 billion kg of carbon dioxide not released into atmosphere

Equivalent to removing 6.56 million cars — 25% of cars registered in the United Kingdom — from the road for one year

2006年における温室効果ガス 排出量の削減

- 燃料使用量削減(農薬散布および耕起回数の減少)= 二酸化炭素排出量が12億kg(120万トン)減少
- 不耕起および低耕起システムの促進 = 大気中への二酸化炭素排出を135億kg (1,350万トン)抑制

英国の登録台数の25%に あたる656万台の自動車の 1年間の排出量に相当

Reduced GHG emissions 1996-2006

- less fuel use = 5.8 billion kg co2 emission saving (2.6 m cars off the road)
- additional soil carbon sequestration = 63.9 billion kg co2 saving if land retained in permanent no tillage. BUT only a proportion remains in continuous no till so real figure is lower (lack of data means not possible to calculate)

1996-2006年における 温室効果ガス排出量の削減

- 燃料使用量低下=二酸化炭素排出量を58 億kg(580万トン)節減(車両260万台相当)
- ・より多くの土壌中の炭素を隔離 = 土地が永 久的に不耕起状態であれば、二酸化炭素 排出量が639億kg(6,390万トン)節減される。 しかし、実際に不耕起状態で維持される土 地は一部のみなので、実際の値はこれより 低い(データがないため計算不可能)

Concluding comments on global impact

- Technology used by over 10 m farmers on 100 m ha (2006) – 12 m farmers on 114 m ha in 2007
- Delivered important economic & environmental benefits
- + \$33.8 billion to farm income since 1996
- -286 m kg pesticides & 15.4% reduction in env impact associated with pesticide use since 1996
- Carbon dioxide emissions down by 14.76 billion kg in 2006: equal to 6.56 m cars off the road for a year

グローバルインパクトに関する 結論

- 遺伝子組み換え技術は、2006年には、1,000万の農業生産者により、1億ヘクタールで使用され、2007年には、1,200万の農業生産者により1億1,400万ヘクタールで使用された
- 重要な経済効果および環境への影響が見られた
- 1996年以降、農業収入は、338億USドル増加
- 1996年以降、農薬使用量は2億8,600万kg(28万6,000トン) 減少し、関連する環境への影響も15.4%削減された
- 2006年、二酸化炭素排出量が147億6,000万kg(1,476万トン)減少(車656万台を1年間運転しない量に等しい)

Concluding comments

- GM IR technology: improved profits & env gains from less insecticide use
- GM HT technology: combination of direct benefits (mostly cost reductions) & facilitation of changes in farming systems (no till & use of broad spectrum products) plus major GHG emission gains
- Additional production has allowed significantly higher volumes of commodities to be traded globally – must have had important positive impact on mitigating level of price increases on world markets
- Expect continued wider adoption of technology = improved profitability, productivity and production, coupled with improved environment

結論

- 害虫抵抗性技術:利益増加および農薬使用量の減少による環境メリット
- 除草剤耐性技術:直接的なメリット(主に費用削減)と農作システムの変化の促進(不耕起および広範囲に効力のある農薬の使用)に加え、温室効果ガス排出量を大幅に削減するという効果
- 生産量が増えることで、世界の商品穀物の取り引き量が 大幅に増え、世界市場における価格高騰の緩和に重要 な影響を与えたと考えられる
- 遺伝子組み換え技術の継続的広範囲な導入に期待 = 利 益率、生産性および生産量の向上、環境の改善

EU biotech regulatory impact

EUにおける 遺伝子組み換え規制の影響

EU biotech regulatory impact

- Directive 2001/18 deals with deliberate release of GMOs
- Regulation 1829/2003 on GM food & feed
- Regulation 1830/2003 on labelling & traceability
- Threshold for labelling presence of GM content is 0.9%
- Labelling requirement includes products derived from GM crops even if you cannot detect presence of protein/DNA eg, soy oil

EUにおける 遺伝子組み換え規制の影響

- 指令2001/18は、意図的な遺伝子組み換え体の 放出に関する
- 遺伝子組み換え食品および飼料に関する規制 1829/2003
- 表示およびトレーサビリティに関する規制 1830/2003
- 遺伝子組み換えの含有量が0.9%以上の場合表示が義務づけられる
- 例えば大豆油のように、タンパク質 / DNAの存在が認められなくとも、遺伝子組み換え作物由来の製品は表示義務の対象となる

EU market features

- Market exists for certified non GM products
- Accounts for about 10% of all soy & soy derivatives & 25% of corn/derivatives used
- Certified non GM demand mostly in food use sector
- Demand for certified non GM decreasing reluctance of supply chain to pay higher price of certified non GM (costs more to grow than GM)

EU市場の特徴

- 非遺伝子組み換え食品の市場はある
- 大豆および大豆由来商品の約10%、トウモロコシおよびトウモロコシ由来商品の25%で非遺伝子組み換えを使用
- 非遺伝子組み換えの需要のほとんどは食品業界にある
- 非遺伝子組み換えの需要は低下している 高価格の非 遺伝子組み換え製品をサプライチェーンが敬遠するため (遺伝子組み換えより栽培コストが高い)

Regulatory problems

- Very slow and non functioning approval process political interference = more traits approved and used outside EU but not approved for import/use in EU
- Zero threshold for presence of EU not yet approved traits = unworkable
- Only 1 trait approved for planting (IR corn) planted on about 100,000 ha in 8 member states

規制上の問題

- 承認プロセスが非常に遅く、機能していない 政治的介入 = EU圏外ではより多くの作物が承認され使用されているが、EUによる輸入および使用は認められていない
- EUにおいて承認されていない作物の閾値はゼロ=実現不可能
- 栽培のために承認された唯一の作物(害虫抵抗性トウモロコシ) EU加盟国のうち8ヵ国において、約10万ヘクタールで栽培

What happens when low level presence (LLP) of unapproved GMOs found in supplies – affects many parts of supply chain

2. Silo

4. Second processing

5. Retail

6. Customer

未承認GMOが低レベルで混入していた場合(LLP)、 何が起こるか - サプライチェーンの多くの部分に影響を与える

2. サイロ

3. 一次加工

4. 二次加工

5. 小売

Example case study: rice

- ➤ 18 August, 2006 USDA announces unapproved trait LL601 presence in US long grain rice
- ➤ 23 August, 2006 –EU Commission emergency measures requiring certificates for US imports to show no LL601 presence
- > September, 2006 boatloads of EU rice imports test positive
- November, 2006 mandatory destination testing introduced

Effect: normal trade of US rice ceases

ケーススタディ:米(コメ)

- > 2006年8月18日 米国農務省が、米国産長粒米に未承 認の遺伝子組み換え米LL601が混入していたことを発表
- > 2006年8月23日 EU委員会が、米国からの輸入米に LL601の混入がないことの証明を義務づける緊急措置を 取る
- 2006年9月 EUの輸入米検査で混入を確認
- > 2006年11月 輸入時の検査の義務化 影響:米国産コメの通常の貿易が停止

Impacts

- Affected 15 millers & rice using food product sector
- Cost to mid 2008: \$73-\$155 million (millers only)
- Equivalent to between 6% to 13% of total long grain rice market
- Costs greater than total profitability in EU long grain market for a year
- Small companies that dominate sector mostly affected
- Some supermarket shelves empty of favourite brands
- · Negative impact on company brands and image of sector

影響

- 精米業15社およびコメ使用食品業界に影響
- 2008年半ばまでのコスト: 7,300万~1億5,500万USドル (精米業のみ)
- 全長粒米市場の6~13%に匹敵
- EU長粒米市場の1年間の総利益を超えるコスト
- 精米業界の大部分を占める小企業が主に影響を受けた
- 人気ブランドが手に入らないスーパーマーケットが出現
- ブランドおよび食品業界のイメージにマイナスの影響

Where next - soy using sector

- New approved GM soy traits in the US (in seed crop this Fall)
- Not yet approved for import into EU
- EU uses over 35 m tonnes of soy & derivatives (almost all imported)
- Food sector uses 1.1 m tonnes of soy oil & many derivatives (eg lecithin)

次は - 大豆を使用する業界

- 米国において、遺伝子組み換え大豆が新しく承認される(この秋、販売用の種を収穫)
- EUへの輸入はまだ承認されていない
- EUは、3,500万トン以上の大豆および大豆由来 製品を使用する(そのほとんどが輸入品)
- 食品業界は、110万トンの大豆油および多数の由来品(例:レシチン)を使用する

Knock-on effects on industry

- Possible shut down of EU lecithin production, replaced by imports equivalent to 3-5% of global production
- Probable price increases leading to additional costs of raw materials
- Replacing European origin (crushed) soy oil (1.1 million tonnes equivalent to 10% of global trade) with additional imports of soy oil and/or switch to rapeseed oil
- Cost of replacing with rapeseed oil at current prices
 \$217million
- BUT expect price rises for alternative oil

産業への影響

- EUにおけるレシチン生産業廃業の可能性。世界の 生産量の3~5%に匹敵する量を輸入して代替
- 価格高騰に続く原料コスト増加の可能性
- ヨーロッパ産の(粉砕)大豆油(110万トン-グローバル 取引量の10%に匹敵)に代わり大豆油を追加輸入する、 または、代わりにナタネ油を使う
- 現在の価格のナタネ油を代替品とした場合のコスト = 2億1,700万USドル
- しかし、代替油の価格は上昇すると考えられる

Assessing the wider cost/benefits of labelling

- First ask question: why label? What is benefit?
- If you choose to label benefit is very difficult to quantify – relates to right to know and choice
- BUT are costs proportionate?

表示の更なる コスト/ベネフィットの評価

- 第一の問いかけ: なぜ表示するのか?そのベネフィットは何か?
- 表示することを選んだ場合 ベネフィットを 数値化するのは難しい – 知る権利と選択 に関係する
- しかし、コストに見合っているか?

Costs of labelling in EU

Benefit/Cost category	Cost (million \$)	Comments
Benefit: Consumer choice and information	Not quantifiable	Most consumers do not read labels and buying behaviour shows GMOs is not an important issue determining actual purchases (in contrast to attitude surveys)
Cost: Public sector staff time & costs for regulators & enforcement	Unknown	Likely to be considerable considering complex and 'unenforceable' nature of derived from part of laws
Cost: Avoidance of GM labelling – price difference for using non GM soy & corn since 1998	Soy: \$1.5 billion Corn: \$0.23 billion	
Cost: avoidance of GM labelling – switch to other ingredients (eg, rapeseed)	\$0.38 billion	
Cost: Overheads	Unknown but large	Costs of setting up identity preservation systems, testing etc
Cost: increased legal disputes	Unknown	Only winners are lawyers
Loss of farm level gains from using GM technology	Soy: \$15/tonne of non GM soy used Corn: \$5/ha	
Loss of pesticide reduction gains	Soy: 0.1 kg active ingredient/tonne of non GM used Corn: 0.05 kg ai/tonne of ngm corn used	
Extra carbon emissions	Soy: 79 kg of carbon dioxide per tonne of non GM soy used	

EUにおける表示のコスト

ベネフィット/コスト区分	コスト (100万ドル)	コメント
ベネフィット: 消費者の選択と情報	数値化できない	ほとんどの消費者は、表示を読まない。
		購買行動を見ると、GMOは実際に購入す
		る際に重要な問題ではない。(態度に関
		する調査とは反対に)
コスト:	不明	法の一部から派生した複雑で"法的強制
公的部門の職員の労働時間、規制と施		力のない"性質から考えてかなりのコスト
行にかかるコスト		であろう
コスト: GM表示の回避 – 1998年以来、非	大豆: 15億USドル	
遺伝子組み換え大豆とトウモロコシを使う	トウモロコシ:2億3,000万USドル	
ことによっての値段の違い		
コスト: GM表示の回避 - 他の原材料への	3億8,000万USドル	
切り替え(例:ナタネ)		
コスト: 諸経費	不明だがコストは大きい	分別流通のためのコスト、検査のための
		コストなど
コスト:法的な争いの増加	不明	弁護士だけが勝者
GM技術を用いることによって得られるは	大豆: 非GM大豆を15USドル/トン使用	
ずの農業収入の損失	トウモロコシ: 5USドル/ha	
農薬使用量の節減の機会の損失	大豆:非GM大豆の場合、1トン当り0.1 kg	
	の有効成分を使用	
	トウモロコシ: 非GMトウモロコシの場合、	
	1トン当り 0.05 kgの有効成分を使用	
更なる炭素放出	大豆: 非GM大豆が使用された場合、1ト	
	ンあたり79 kgの炭素が放出	

Concluding comments

- EU has costly and poor functioning regulation of biotech
- Adds considerable cost to food and feed supply chain
- Negative impact on EU competitiveness
- Bad for income and employment generation
- Loss of products & higher prices likely for consumers
- As more biotech traits are approved outside the EU costs to EU economy will increase

Don't copy EU regulation if you want competitive industry creating employment and providing consumer choice

結論

- EUの遺伝子組み換え規制は、コスト高であり、また満足に機能していない
- 食品および飼料サプライチェーンがかなりの追加コストを負担している
- EUの競争力にマイナスの影響がある
- 収入および雇用創出のためにならない
- 消費者に対し、商品不足および価格上昇を招く可能性が高い
- EU圏外においてより多くの遺伝子組み換え作物が承認されると、EU経済へのコストが増加する

雇用を創出し、消費者に選択肢を与えることのできる競争力のある産業を目 指すなら、EUの規制を真似しないこと